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POLCA project

An opportunity to re-think signal processing from pixels to image in
polychromatic interferometry

Image reconstruction point of view:

> simple if:
> model as linear as possible,
> noise statistics under control (e.g. no division of random variable. .. ),

» computationally intensive,
> no longer a constraint,

Image reconstruction directly using raw measurements? (no reduction)
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Instantaneous brightness distribution in the image

plane of an interferometric recombiner (e.g. e

AM BER) P ¢ = position on detector;
LR
J > )\ = wavelength;
_ P j — telescope number, (J1,3d2) =
£ t - E é‘ )‘ f? ()\ f) pair of recombined telescopes
j=1 (baseline), J = number of
telescopes;
. . . > . = j- :
+2 E \/ajl (&) fi (A1) agy (& A) fia (A t) (G ) S PR el gt ety
1<ji<ja<J > fj (X, t) = flux from j-th output;
inst ,.obj iwjy i (N EFY 5, (N1)] P NSt (X) = instrumental
X Re[”jldé (A) Vi1, g2 (/\) € 12 e ] w;émjt?

> W;T‘jZ () = object complex
visibility;

> wj1,d2 (X) = pulsation (for a
given baseline);

> "/’h D (X, t) = phase term due
to turbulence and fringe tracking
errors;

E. Tatulli et al. (2007)
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Let §;(A,t) be the optical path between the object and the j-th interferometric
output. The phase of the fringes between ji-th and js-th telescopes is that of
the object complex visibility plus a perturbation phase term given by:

2T

Vi1 .2 (Av t) = T [6j2 ()‘a t) - 511 ()‘v t)]

[y (8) — agy ()] + [By, (8) — By (D] / A+ - ...

&

Consequences:

> the perturbation 1;, j, (A, t) prevents to integrate complex visibilities;

> only non-linear estimators (like powerspectrum and phase closures) which
cancel 9;, j, (X, t) can be integrated during an exposure;
— loss of information;
— lower SNR;
— difficult to build an image given the non-linear measurements;

Can we estimate (perhaps up to some degeneracies) the unknown «;(t) and
B;(t) only from the actual data?
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Integration in k-th pixel, ¢-th spectral channel and

m-th time frame yields the expectation of the

image of the fringes: > &}, = position of k-th pixel;

tyn, = time in m-th frame;

| 2
def Ep+AE/2 tm+AL/2 > A g = wavelength in £-th channel;
gef i(¢,t) dtde
Yk,t,m i(€,t) > b = baseline index;
13 t >

k—AE/2 Sty —At/2 (j1 (b), G2 (b)) = pair of

J recombined telescopes for b-th
A . baseline;
= E gkt Ji,0.m > Aj k¢ = PSF of j-th output;
J=1 > fj,l,m = flux from j-th output;
J(J-1)/2 i
( M > vgﬁ; = instrumental visibility;
+ E fy'l,Z,rrL fj;g,[,'m M(atq/}b,l.m At) obj
> Vp g = object complex visibility;
b=1 >
Lo > = rand h
obj i ’l’b,l,m random phase error
X Re[Bb,k,g (o ; e’ b’é'm] term;
> XGom Bj,m = optical path
- ters;
Wlth: parameters,

P> M. . .) accounts for loss of
visibility due to fringe motion

_ inst 1wy g &k
Byt = 2/ Ajy () 5,0 A g (0) k0 Vbt € > oy = pulsation;

wb-,f,m = [Oéjg(b)nn - Oéjl(b)ﬂn,] + [5]'2(1)),777 - le(?])<1rz]/Al




In matrix form, the fringe pattern and the photometric measurements are:
Y AL F 4B ™,
¥y =C-f,
with f the fluxes and v™" the raw complex visibilities:
Ot Z N Fiv e Finstam M(Oitho em At) v € V06m

Putting all available data (fringe pattern and photometric channels) together:

y=H z(0)

phot C 0
y:<Zfringe)> HZ(A B)7 w(e):<£raw>a

and the sought parameters:

with:

0 ={a,B,f,v"}.

Nota bene: H is a generalization of the visibility to pixel matrix (V2PM).
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Available data can be put in the form:

y=H-z(0)+_ n

model noise

with:

0= {a,B.f,v"} and () = ( 7 ) ,

v

where f are the fluxes, o and 3 are the optical path parameters, v°® are the
object complex visibilities and v™" are the raw complex visibilities:

\/ f]l,l m fJQ,f m M(atd)b £,m At) vgbj el V.,

Our objectif: Fit the data y w.r.t. the sought parameters 6.




The sought parameters: _
0 = {8, f, v}

(fluxes f, optical path parameters o and 3 and object complex visibilities v°bj)
are estimated by maximum likelihood (non-stationary Gaussian noise):

0" = arggnin{L(B) = (H-z(0) — Q)T "W (H-z(0) - Q)} )

with W = Cov(g). The co-log-likelihood L(0) can be rewritten as:
L(8) = const. 4+ (x(0) — &) - Q - (x(0) — &)
with the reduced data & given by solving the normal equations:
H' W H2=H -W.§ — &=MH -W-H .H Wy

Q R

Nota bene: R is a generalization of the pixel to visibility matrix (P2VM).

Important

Using the reduced data & with weights Q is equivalent (no loss of information)
to using the pixel data g.
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We need the frame data ¢ and a good estimate of their statistical weights W.

» Poisson (photon noise) 4+ Gaussian (detector noise) distribution
approximated by non-stationary independent Gaussian distribution.

» Signal-dependent variance of the measured pixels:
Var(Jk,e,m) = NYk.em + ¢

where Yr.¢.m = E(fr,em), 1 = 1/7 and ¢ = (o/7)* + 1/12, with v the
detector gain (in e~ per digital level) and o the standard deviation of the
detector noise (in e per pixel per frame);
> Since yi,e,m unknown in practice, we considered different approximations
of Yk,t,m = E(ﬂk,g,m):
> Mistral (Mugnier et al., 2004):

o Mistral _ .
Yk,t;m =Yg gomy, = Max{0, Jr,e,m}

> uniform level:
~ V€ _
Yk,t,m X Yy, = (Ttm )
> maximum likelihood:

~ ML
Yk, 0,m = Yk o,m = argmax
y=>0

(T, 0,m — ¥)? }
3%y 1
{7,’7“4 +log(ny +¢)
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Precision of phase estimation
(R RN I EY N R I TR R AN

Precision of the phase estimation of the raw complex

H

5

°
|

visibilities for different fluxes (horizontal axis) and

different fringe constrats (from 0.1 in orange to 0.9 in
purple). Settings similar to AMBER (detector gain:
4.18 e~ /ADU, detector noise: 9.0 e~ /pixel RMS).

phase error (degree RMS)

0.1 —

R RN
10%2 10%3 107 10%5 10"6

Flux (total number of photons)

Important result:

The error on the estimation of the phase of the raw complex visibilities is
almost the same as using the exact (but unknown) variance whatever our
approximation of the variance.

Remind that the raw visibilities are part of the reduced data given by:
g=H-W-H H -W.§

with H the generalized visibility to pixel matrix and the weighting matrix W = diag(1/ Var(g))

depending on the approximation of the variance.
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> Being linear combinations of the pixel values, measured raw complex
visibilities ;%7 ,,,, and photometric fluxes f; ¢ . are approximately
Gaussian random variables.

» Based on mathematical approximations and simulations:
Var{Re(07,,)} ~ Var{Im(35y )}
Cov{Re(05¢,pm ), Im(047 )} ~ 0
- Cov(ﬁll;i\z/,m) ~ O’li[,m 1

thus Goodman (1985) model applies.

> Not yet checked:

> independant random variables — for different (b, ¢, m);
> still true for multiplexed fringes (e.g. AMBER)
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A critical issue to allow for integration of complex visibilities is the ability to
align the fringes of all the frames. That is to compensate for the phase error
terms Yy 0,m .-

For a given baseline b, we propose to align the fringes of frame mi and frame
meg for all spectral channels by minimizing the co-log-likelihood:

~ ~ 2
L= E Hpb,ﬁ’mz R(Awbl,mlme) ! vzay‘z,ml = Pb,e,my vrba.vly,mz ||wl7 tmym
7 Jemy,

with respect to Aa and AS3 such that:
Awb,é,ml,mz - 1/)b,e,m2 - 1/)b,2,m1 - Aabl,'ml.mg + Aﬁb,l,ml,mz/)\é .

Nota bene:
» R(A%) is a 2-D rotation matrix (same as multiplying the raw complex
visibility by a phasor of argument A) and allows to align the phases;
> the non-negative factors py ¢ account for contrast change;
> the statistical weights are:

~ raw ~raw —1
W t,my,my = Cov(pn,e,ms R 50, my — Po,e,my Vbit,ms)

~ ~ -1
= [pg,f,mz R- Cov(v'l;a’v;)ml) : R'T + pif,ml ) Cov(v;)a»‘gym2)]

%

2 2 2 2 -1
(Pb,e,ms Tb,0,my + Pb,timy Tbems) L
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Choosing pp¢,m = |05 ¢ | yields:

L= E Wy, e,my,ma

£

i . 2
e' A"/)b,l,ml,m2 _ el Ad)blymlymz

with weights:

2 2
Po,e,my Pb,L,my

Wh,0,mq,ma = 5 P} 5 P}
pb,ﬁ,mz Ub,[,ml + pb,e,ml Ub,Z,TnQ

and phase difference data:
AV, g,y = BT my) — AT m,)
modelled by:
AYp t.my my = A £my ma + ABbemy my /e
with
At tmy ma = (Qa (b),mz = Xy (0)mz) = (Ao b),my — Ay (5),my)

APy tmy,me = (ﬁh(b),mz - ﬁj1(b),m2) - (ﬁjQ(b),ml - /81'1(5),7”1)
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We now have separable 2-D problems (for given baseline b and frame numbers
ms and ma) of minimizing:

L(Aa, AB) = ZW BV 0y my _ gl (BatAs/A0) |2
with respect to Aa and AS. Require global optimization. However analytical
solution for:
Ao € argmin L(Aa, AB)
Ax
exists:
i Aot u(AB) . i (A9 —AB/Ag)
= ——% with: |[u(ApB) = we e bylymy may ¢
u(a5) 2

replacing Ao by Aa™ vyields a criterion which only depends on AS:

__ 2
e AYbemy my u(Ap) el BB/ e

+ def a+ = w
LT(AB) = L(Aa™, Ap) ; ¢ u(25)] ©

which requires only 1D global optimization (easy).
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Fringe Alignment

cost function: L*(AB)

-2000 -1000 0 1000 2000

AB (um)

» Maximum likelihood estimate of 3
is done by 1D global optimization
of the criterion (see curve above):

L*(AB) € L(Aa*t, AB)
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Fringe Alignment (zoom)
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» Maximum likelihood estimate of 3
is done by 1D global optimization
of the criterion (see curve above):

LY(AB) E L(Aa™, AB)
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Temporal Phase Shift

Fringe Alignment (zoom)
— 300
D
<
— S 200
= 800 D
g k=)
g 100
- £
— 600 =
c w0
k=] o
2 40 8 100
2 o
‘g -200
3 200
o » 10
-400 -200 0 200 400 g 5
o 0
w5
4B (um) g o

100 200 300 400 500

Frame number

» Maximum likelihood estimate of 3 In green: the true phase shift at 2.2 pm. In red:

is done by 1D global optimization
of the criterion (see curve above):

the estimated phase shift. In blue: the residuals.

Data: 20 spectral channels in K band.

LY(AB) E L(Aa™, AB)




Temporal Phase Shift

fringe alignement with f only
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In green: the true phase shift at 2.2 pm. In red:
» Maximum likelihood estimate of ﬁ the estimated phase shift. In blue: the residuals.
is done by 1D global optimization Data: 20 spectral channels in K band.

of the criterion (see curve above):
Sans paramétre A«

L*(AB) Z L(AB)




Our alignment method:
1. is insentive to the phase of the object complex visibility;

2. is robust with respect to constrast changes and insensitive to
amplitude of object complex visibility;

3. can be solved easily (separable 1D global optimization problems).

Nota bene: points 1 and 2 are two major issues with fringe sensors.

Next (and final) stage is to fit the other parameters...
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Our objective is to find the global minimum of the co-log-likelihood criterion:

2

bj i ~
‘\/fjl(b),l,m sz(b),ﬁ,’rn M(atwb,[,'m Am) 1);2 el Yotm Ul‘;a‘zlm

HOESYS

b,e,m U?,l,m
+ Z [fj fJJZ m]
j,6,m Var(fJEM)

with:
Voem = [y (0),m — Ay (b),m] F [Bia),m — Biy(0),m]/ Ae

We assume that the proposed alignment method provides good initial values
for the optical path parameters a and 3 to devise our optimization strategy...
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0. pre-align frames as explained, yields a§-?2n and 6(-0) and choose initial

i mo
fluxes, for instance:
Lo = T
set n = 0 (iteration number); and repeat steps 1-4 until convergence:
1. fit object complex visibilities (closed solution):

,Uobj(nJrl) — arg min L(a(n)”@(n)’ f(n)’ vobj)
wobj

2. fit piston parameters:

. j(n+1)
("1, B Y) = argmin L(e, B, f™, ™)

o,

done by local optimization, starting at the previous solution;
3. fit fluxes (L x T separable global optimisation problems of size J, the
number of telescopes):

fj(n+1)

A,m

= arg min L(a("+1),ﬂ("+l), f, v°bj(n+1))

Jrtm

4. cancel average piston;
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Frame alignment is a post-processing coherent integration of visibilities:

>

>

>

preserves most of the information,
the errors are still Gaussian,

all telescopes do not need to be cophased at the same time (unlike phase
closures),

gives object complex visibilies v°” up to a chromatic piston
— self calibration
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After the proposed pre-processing, the data are

complex visibilities known up to a phase shift:

> 4 = complex visibility data;

~ o i[Aay ,+ABL »/Ae] =~
bop =tbop (F-T)pepe o R + Ny e g
Yv,e,p 2 ( )b.t,p Lip > = 3-D (spatio-spectral)
noise object image;
. . . > ki h g
In matrix notation: RO PRSE EHOrs
Aapp = @y (b),p = %1 (b),p

y=tR(c,8) - F-z+n ABv,p = Big®),p — Bi1(v),p

» t = Instrument transfert
function;

with R(e, 3) a block diagonal matrix with 2 x 2
blocks corresponding to rotations by angle
A05b,p + Aﬁb,p/AZ-

> 7, = noise;

v

F = non-uniform Fourier
transform;

Unknowns: p = exposure index;

» x = 3-D (spatio-spectral) object image; £ = wavelength index;

» (, [3) = phase error parameters; b = baseline index;

vV vy VvYy

j1(b) and ja(b) = telescopes
involved in b-th baseline;

» t = instruments tranfert function.
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Image reconstruction (inverse problem)

Alternate minimization algorithm:

0. Choose initial phase shift parameters a(?) and B8(?). Set ¢t = ¢/e, k=0
Repeat until convergence:
1. image reconstruction step:

) = arg min
x>0

{FewaR(& B9) F ) + s i)} :
2. piston self-calibration step:

(e, BHY) = arg min Jows (R(ex, 8) - F -2 1);
a,

3. transfert function calibration step

4. let k=k+1,

DAy
September 2



We propose a method for frame alignment which:

>

is robust w.r.t. noise and insensitive to object complex visibility (unlike
conventional fringe tracking);

exploits multiple wavelengths;

allows for coherent integration of visibilities during an exposure;
avoids loss of frames;

avoids loss Fourier phase information (compared to phase closures);

could account for atmospheric refraction (higher order expansion of the
phase error terms);

provides object complex visibilities up to unknown phase bias which
depends on few parameters

= image reconstruction requires self-calibration (much easier than
working with phase closures and powerspectrum);
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H 2
Complex variables are also 2D real vectors: C ~ R

Convention:
VueC, u~wu=(u,uz) €R® with u; = Re(u) and ug = Im(u).

With this convention, any complex random variable & € C has an expected
value: ( ( ))
_ _ Re(E(a

(which directly follows from linearity) and has an associated 2 X 2 covariance
matrix defined by:

Cy = Var{Re(@)},
_ . C1 Cs . _
Cov(a) ~ Cov(a) = ,  with: Cy = Var{Im(a)},
( G G ) Gy = Clo (), Tl @)

The corresponding weighting matrix is:

_ ay=i L C2 —Cs
W = Cov(u) oG ( s Oy )
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